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Abstract. We examine and evaluate the functional determinants associated with a class of 
periodic operators which arise in the quantum theory of solitons. The functional deter- 
minants are expressed in terms of a finite subset of the spectrum of the operator, a subset 
which corresponds to the edges of the valency or conduction bands of the Schrodinger 
equation. 

1. Introduction 

In this paper we shall examine functional Ldterminants associated with a class of 
periodic operators. Although it is a standard method in field theory to proceed by 
first considering a system in a large but finite spatial volume and then extracting the 
infinite volume limit, it is a much harder calculation to keep the finite volume at all 
stages. While the ‘thermodynamic’ limit is often the object of an inquiry, situations do 
arise when we wish to keep some finite dimension present. For instance, the Casimir 
effect (Toms 1980) and field theory at finite temperature (Dolan and Jackiw 1974, 
Braden 1982) are two examples. Further examples concern the periodic string (Gervais 
and Neveu 1982, Mansfield 1983) and solitons; the latter will be amplified shortly. 

The class of operators we shall deal with are usually referred to as Hill’s 
operators, which are second-order differential equations of the form -d2/dx2 + q(x)  
where the potential q (x)  has period L (Magnus and Winkler 1966, Eastham 1973). 
These arise naturally when considering quantum mechanics on a lattice (Sutherland 
1973). They also arise in the second variation of the action for fields with finite 
periodicities, and hence our interest in  their functional determinants. These operators 
also arise in the study of quantum mechanical, completely integrable systems 
(Olshanetsky and Perelomov 1983). 

To be more specific consider the following illustrative problem. Let 2 = :(d,4)’- 
t(d,d)* - 2m2 sin’ $4 be the Lagrangian density for fields on a spacetime with topology 
R x S’ ( S ’  here is, taken to be spatial with period L) .  The time-independent classical 
equations of motion can be solved. When the combination mL is large enough, 
non-trivial, classical solutions exist. This is of course just saying that we can solve the 
equations of motion for a pendulum: the non-trivial solutions are those that actually 
go over the top of the circle, there being an energy requirement necessary for this to 
occur. The lowest-energy non-trivial solution becomes the usual SG soliton in the limit 
L+ W. The small oscillations about this classical solution lead to the study of Lame’s 
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equation (Whittaker and  Watson 1978) 

+ p (  p + l ) k 2  sn2(x, k )  - ap 

Here p = 1 for the SG case given above and ap is a constant; sn(x, k )  is an  elliptic 
function. Similarly we get the p = 2 case if we study the analogous 44 case (Avis and  
Isham 1978). The L-. CO ( k  + 1)  limit of this equation gives us the usual reflectionless 
potential Sturm-Liouville equation normally associated with solitons. The K -. 0, 
L + T, limit reduces to simple harmonic motion. 

The purpose then of this paper is to examine the functional determinants which 
are associated with operators of Hill’s type. A useful means of doing this is via the 
zeta function formed from the operator. This is reviewed in § 2 .  In constructing the 
zeta function we use a suitable resolvent of the operator-that is, a function that singles 
out the eigenvalues. The real difficulty lies in choosing appropriate forms for the 
resolvent. In  § 3 this is studied and the resolvent is constructed from a subset of the 
eigenvalues. Using the language of solid-state physics, the resolvent is constructed 
from the knowledge of the edges of the valency and  conduction bands. For a generic 
potential this, of course, may involve all of the eigenvalues, but for the cases that 
frequently arise it involves far fewer. For instance, the resolvent of equation (1) is 
given in terms of 2 p +  1 eigenvalues each of which is known. One of the principal 
purposes of this paper is to emphasise the utility of this representation. This is illustrated 
in § 4 by examining the p = 1 form of equation (1). Here we also take the L+ CO limit 
and in so doing rederive several known results. Section 5 consists of a discussion and  
conclusions. The appendixes contain some calculations involving elliptic functions. 

2. The zeta function 

One of the advantages of working on a compact space (with appropriate boundary 
conditions) is that the spectrum becomes discrete. We associate with an  operator A 
the zeta function l A ( s )  (Dikii 1961) constructed from the eigenvalues A, of A 

considered as a function analytic in s. The determinant of the operator is then 
constructed (Hawking 1977) from -dlA/dsI,=O. If A has a zero mode we must, as is 
well known, exclude it from the above and  treat it separately. 

It is convenient in what follows to explicitly include the vacuum energy subtraction 
in our treatment. Thus if A. is the operator coming from the small oscillations about 
the vacuum we consider the combination 

g ( s )  = Tr[A-’ - A,’]. (3) 
Here equation (3) is a trace over all the (non-zero) eigenvalues of A, A,,. Then 

Equation (4), although free from vacuum divergences, may nevertheless be divergent 
at s = 0 corresponding to needed counterterms. Thus, for a two-dimensional field 
theory, adding an appropriate mass counterterm makes this finite. 
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We are interested in the case when-by separation of variables, for instance-the 
operators A, A. contain a part that is a Hill’s operator. To concentrate on this situation 
we take the remaining coordinates as for free d-dimensional motion and then we have, 
with K representing the Hills operator 

-- - 27rdI2 Tr[ lox dw w d - l  ( w 2 +  K ) - ’ ]  
U f d )  ( 2 d d  

1 T ( f d )  
T ( f d )  ( 4 ~ ) ~ ”  r(s) 

T(s - i d )  Tr[(K)”/’-’]. 
1 - ( 5 )  

For the special case where K corresponds to free motion with period L, equation 
( 5 )  gives a term that is well known-the Casimir term (Hawking 1977, Toms 1980, 
Braden 1982) 

where l R ( - d )  is the R ieman  zeta function which vanishes for d even, and has a 
simple form for d odd, When d = 1 the expression (6) becomes - T / ~ L  and when 
d = 3  it is -.rr2/45L3. 

We are led then to consider the following function of s: 

G( s)  = Tr [ K ’ - K 3 (7) 

where K and K O  are the Hill’s operators coming from A and AO. (Of course d could 
be zero in what we have said and then A and A.  coincide with K and KO respectively.) 
Equation ( 5 )  is, for d = 1, just the usual combination appearing in soliton mass 
corrections: G(i) typically needs a mass counterterm to make it finite. 

In what follows we are going to concentrate on G ( s )  with s = 0. In particular we 
shall give expressions for Tr[ln K I K , ] .  The reason for working with the quantum 
mechanical case ( d  = 0) is simply to isolate the key features of our approach avoiding 
the additional complications of counterterms. The results are applied elsewhere to 
field theories. 

The study of G(s) proceeds via a resolvent R(A) ,  a function with only simple poles 
of residue 1 at the eigenvalues A n  of K and residue -1 at the eigenvalues of KO.  Then 

where the contour r’ encircles the real A axis in a positive (anticlockwise) sense about 
the minimum eigenvalue of K or KO. For a Hill’s operator such an eigenvalue exists 
(Eastham 1973). Our earlier remark about separating off zero modes means the 
resolvent is such that it has no pole at zero. Lastly it is possible to remove the (finite) 
negative eigenvalues from K and KO and treat these separately. Thus we can consider 
the contour r’ to encircle the positive A axis crossing at the origin. 

There is a further integral representation of (8) which is frequently useful. This is 
obtained by completing the contour on a large circle around the A plane and is valid 
as long as the contribution from this contour vanishes as the circle becomes increasingly 
large. (This behaviour is shown to hold in the following section.) Such a contour is 
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then readily deformed to pick up  the discontinuity of G across the negative A axis. 
On the assumption that R ( A )  is continuous across this axis, a point justified in the 
next section, the result is then 

In what follows we shall show R ( A )  to have the form (d/dA)f(A). When this is 
the case the functional determinant det K / K o  has a particularly simple form 

l n [ d e t ( d ) ]  = -JOxdA R(-A)  

= f ( O ) .  ( l o b )  

We shall utilise this last representation for G ( s )  to make contact with Levinson’s 
theorem later on. 

Our next task is to find suitable expressions for the resolvent R(A) .  This is done 
in the next section. Before proceeding to this, however, it is useful to consider a sample 
calculation which illustrates the ideas of this section and which is later generalised. 

As an  example we take the case of a constant potential a, that is, we have the 
following two Hill’s operators: 

To specify the spectrum we need to specify the boundary conditions of the problem. 
Taking the periodic boundary condition (with period L )  a suitable resolvent is 

- 1 
= + 2  2 

A - a - ( 2 k ~ / L ) ~  A - ( 2 k r / L ) *  

The choice of this resolvent is motivated in the next section. The factor A has been 
included to remove the zero mode. We have included the factor ( A  - a)-’ for con- 
venience for it allows us to take the limit a+O without complication. The overall 
factor of 2 gives us the multiplicity of the eigenvalues. 

Thus for s < $  we may use the representation (9). 
Note, for s = which appears in a two-dimensional soliton calculation, we can only 
use this representation for subtracted (renormalised) quantities. Equation ( 1 0 6 )  then 
gives us 

As A +CO, R ( A )  goes like 

-d2/dx2 - a sinh giL 
-d2/dX2 )] = I n (  & f i L  )’ ( 1 3 )  

This is the usual result which may be derived in this case by an  explicit summation. 
From ( 4 )  we have 
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The result (13) follows now by using the identity 

3. The resolvent for the periodic potential 

The purpose of this section is to construct a suitable resolvent for the Hill’s operators. 
To do this we must first recall some standard results from the theory of these operators. 
In order to provide a self-contained account we shall briefly do this, referring the 
reader to the standard sources (Magnus and Winkler 1966, Eastham 1973, McKean 
and van Moerbeke 1975) for further information. 

Let y,(x, A ) ,  yz(x, A )  be the solutions of the Hill’s equation 

(16) 

with boundary conditions y,(O, A )  = yz(O, A )  = 1, y,(O, A )  = yz(O, A )  = 0. Now any two 
independent solutions at x = L are related to those at the x = 0 by a matrix, the 
monodromy matrix. Here we have 

d2 
dx2 

Ky = Ay K =--+q(x) 

The determinant of this matrix is just the Wronskian of the two solutions, i.e. 1. 
Defining the discriminant A (  A )  of Hill’s equation 

A(A)  =Tr[M*I =Yl(L)+Y;(L) (18) 

then the characteristic equation for the eigenvalues of MA is 

p ’ - h ( ~ ) p + i  = O  (19a) 

A ( A ) * ( A 2 ( A ) - 4 ) I ”  
2 

p + p -  = 1. p* = 

Setting p* = exp(*iaL), Floquet’s theorem tells us that when these roots are distinct, 
equation (16) has two linearly independent solutiow f,, f 2  such that 

f I ( X )  = exp(iax)p,(x) = exp(-iax)p,(x) (20) 

where pl,  p z  are periodic functions of period L. 
From (19) and (20) we see the Hill’s equation has stable solutions provided 

lA(A)I < 2. The solutions of / A ( A ) l =  2 give the intervals of stability and instability. Let 
A ,  be the solutions of this equation (see figure 1). 

Then for ( A 2 , - , ,  A 2 , )  ( i  = 1,2, .  . .) we have an interval of instability: no solution 
here is bounded. The complementary intervals (Az, ,  A 2 , + , )  ( i  = 0, 1,2 . . .) are the inter- 
vals of stability: here every solution is bounded, but none is of period L or 2L. These 
intervals of stability are just the conduction and valence bands for the Schrodinger 
equation (16). The A,  represent the periodic spectrum; the solutions have period L 
for Ao, h41-I, A4 ,  ( i  = 1,2, .  . .I and period 2L for A41+1, A4,+2 ( i  = 0, 1,2, .  . .). In general 
the solutions at the end points are unstable. This is always true for A,,. Solutions are 
stable if an interval of instability collapses, i.e., if we have a double root A Z l - ,  = A Z 1 .  
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2 

- 2  

Figure 1. The discriminant A(A ). 

We call the simple roots the simple periodic spectrum. Obviously these come in pairs 
apart from Ao. 

We now construct resolvents-depending on the boundary conditions-from the 
monodromy matrix MA. Obviously A ( A )  + 2( =Tr[M, * 13)  = 0 has the antiperiodic and 
periodic spectrum as roots. Dirichlet bcundary conditions are given by the roots of 

= y2( L, p )  = 0. The roots F~ of this latter equation form the auxiliary spectrum. 
These interlace the periodic spectrum, pi E [ A 2 , - , ,  A 2 , ]  ( i  = 1,2,  . . .). In what follows 
we shall concentrate on the former boundary conditions even though similar results 
are available for the auxiliary spectrum. 

To construct the resolvent R ( A )  we use the fact that A ( A )  and A(A)*2 are integral 
functions of order 5. This means that they possess product expansions of the form 
c,II, (1 - A / A , )  where A, are the zeros of the appropriate function, and c, is a constant 
readily obtained by asymptotic analysis. An appropriate resolvent is 

d 1 
dA n A - A n  

R ( A )  = - ln(A(A) i 2) = - 

which has simple poles of residue 1 at the zeros of the function being considered. 
To illustrate, consider KO = -d2/dx2. The appropriate monodromy matrix is then 

Tr[M, - 11 = A(A)-2 = 2 C O S L L - 2  = -4 sin2$&L 

(24) 
1 cc d L 

R ( A )  =-ln(A(A)-2) =-cot i h L =  
dA 2 4  A k=-cc A - ( 2 k ~ /  L)2’  

Here we have the resolvent for periodic boundary conditions we used in (12a),  though 
the zero mode has yet to be subtracted. A similar result holds for the antiperiodic 
boundary conditions. 

To utilise the resolvent (21) we are required to find expressions for A ( A ) * 2 .  Of 
course we can solve the Hill’s equation and construct solutions y,(x, A ) ,  y2(x, A )  with 
the required boundary conditions. A simpler method is, however, often available. It 
uses a remarkable result of Hochstadt: the simple periodic spectrum determines both 
the double periodic spectrum and the non-trivial roots of A’(A)  = 0 (Hochstadt 1965). 
Physically this is saying that given the edges of the various conduction bands for the 
potential, we can construct the periodic spectrum. Furthermore, we have a simple 
representation for this. Suppose there are n + 1 bands with edges A:, . . . , A:,,. The 
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non-trivial roots x j  of A‘( A )  = 0 are determined by the condition 

where I ( p )  in (25) is determined by the simple periodic spectrum: 

Having determined the non-trivial roots i j  the discriminant may be expressed (McKean 
and van Moerbeke 1975) in the following form 

A(A)=2cos $ ( A ) L  (27) 

with 

Hochstadt’s result then says $ ( A )  = *m.ir/L iff A = Az,-l or A = A2,. That is (25) and 
(27) show the simple periodic spectrum determines both the non-trivial roots of 
A’(A)  = 0 as well as the double periodic spectrum. 

For our simple example KO we find l ( A )  = J-A, $ ( A )  =A and A ( A )  = 2 cos h L  
which is the result of (22) .  Hochstadt’s formula (27) is particularly useful as we may 
readily generalise the results already obtained for the simple harmonic motion KO.  In 
particular (23) becomes 

A ( A )  - 2  = --4 sin2 l $ ( A ) L .  (29)  

Using this expression, suitable resolvents for both periodic boundary conditions (R,) 
and for antiperiodic boundary conditions ( R - )  are easily constructed. For the subtrac- 
ted combination K - K O  these are 

R+(A) = 2-ln d (sinf$(A)L) Jh 
d~ sin SAL ( A  - A ~ ) I / ’  

COS ; $ ( A ) L  

In constructing R+ we have included the possibility K that has a zero mode A, and 
introduced factors which serve to remove it. We observe R,(A) are continuous across 
the negative A axis, the assumption we made in the previous section. 

To make connection with the different representations of § 2 we must now look at 
the asymptotics of R ( A ) .  Using standard methods we have 

q(z)dz+O(A-I) .  
A ( A ) - 2  
Ao(A) -2  

Thus as A +=CO, R(A)-A-”*,  as stated earlier. Further, the second term in (32) is 
precisely the mass counterterm needed in connection with G ( f )  and soliton calculations. 
Utilising equations (10) we find 
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This straightforwardly gives (13) for the case K = -d2/dx2 - a,. To illustrate these 
results we turn to the first non-trivial example, n = 1, in the next section. 

4. An example: the two-band potential 

In the previous section we used Hochstadt’s formula to give expressions for the 
resolvent R ( A )  in terms of the simple periodic spectrum of the Hill’s operator K = 
-d2/dx2+q(x) .  Thinking of K as a Schrodinger equation, R ( A )  is constructed from 
the edges of the conduction and valence bands. For n + 1 bands it is constructed from 
2n + 1 simple eigenvalues. A theorem of Borg tells us that n = 0 if and only if q is a 
constant then this gives the simple harmonic oscillatory example so far considered. 
Similarly a result of Hochstadt tells us n = 1 if and only if q(x)  = 2k’ sn2(x, k )  - b, i.e. 
the p = 1 form of Lame’s equation (equation (1)). Indeed the n = p  form of Lame’s 
equation always gives us n + 1 bands. In this section we shall consider in some detail 
the n = 1, two band situation. This is relevant to the example discussed in the 
introduction. 

Suppose we have a potential with bands (cy, p ) ,  (7, C O ) ;  the former would be viewed 
as a valence band, the latter a conduction band. By rescaling cy s p s y can be brought 
to the form v ( k 2 - b ) ,  v ( l - b ) ,  v ( 1 + k 2 - b )  with v = y - c y ,  k ’ = ( y - p ) / ( y - c y ) ,  
b = ( y - c y ) * - p / ( y - c y ) .  A further rescaling of x means we may set 77 = 1. In this 
form the band edges k2 - 6, 1 - b and 1 + k2 - b are just those that come from the n = 1 
form of Lame’s equation written above. In figure 2 we draw the discriminant A ( A )  
for this equation. 

* A  

Figure 2. The discriminant h ( h )  for the potential q ( x )  = 2 k 2  sn2(x, k )  - b. 

If  we calculate A ( A )  from the monodromy matrix we need the solutions y,(x, A ) ,  
y,(x, A ) to the Schrodinger equation (16) with our chosen potential. These are in fact 

(34a) Y ,  (x, A ) = Y+(X, A 1 - Y-(X, A 1 
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Here sn, cn, dn are Jacobi elliptic functions, If, 0 are theta functions and 2 is the 
Jacobi zeta function. 

The solutions y ,  may be straightforwardly generalised to the n = p form of Lame’s 
equation following Hermite (1912). It becomes more difficult, however, to find the 
appropriate combinations giving y , ,  y,. We show in appendix 1 these solutions possess 
the appropriate k -. 0 limit: 

sin x ( A  + b)’/’ 
(37) ( A  +b)”’ ’ 

lim y , ( x ,  A )  =cos x ( A  + b)’I2 lim k-0 y,(x,  A )  = 
k - 0  

The solutions y,, , (x,  A )  we have constructed are linearly independent within the 
intervals of stability. At the end points, however, these solutions coalesce. Here there 
is a non-periodic eigenfunction and a periodic eigenfunction. This behaviour is general 
to all Lame’s equations: the periodic eigenfunctions are in fact polynomials (the Lame 
polynomials) in the Jacobi elliptic functions. Table 1 gives these solutions for the 
n = 1 case. We note that the k - .  1 limit of Lame’s equation gives us the usual 
reflectionless potential-this limit of the Lame polynomials gives the Legendre poly- 
nomials. 

Table 1. Solutions y, , (x ,  A )  for n = 1. 

Periodic Non-periodic 
Eigenvalue eigenfunction Period eigenfunction 

4K 

To calculate A ( A )  we now use equation (18) with period L=2K.  Using the 
periodicity properties of elliptic functions this reduces to 

(38) 
Hochstadt’s formula is also easy to calculate. We find from (26) 1, = k 2 +  E I K  - b. 

A ( A )  = -2 cos 2iKZ(a) .  

Thus using A. = k’ - 6 equation (28) yields 

(39) 
( p  - L )  du . A  

$ ( A )  =; I,,, [ - ( p  - k Z +  b ) ( p  - 1 + b ) ( p  - 1 - k 2 +  b ) y  

Again we have the relation between A and a given by (36). Further the range of a 
comes from (39). We find 

(41 a )  a = i u + K + i K ’  U E (0, K ’ )  

a = i u  U E (0, K ’ )  for 1 + k 2 - b s A .  

for k 2  - b s A S 1 - b 

(41b) 
These correspond to the solutions y ,  (35)  being bounded. 
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By now using the general formulae (30) or (31 )  for the resolvent we can construct 
the regularised determinants for finite period. We make contact with other known 
results by taking the k-.0,1 limit of these expressions. The k- .  1 limit yields the 
scattering result for solitons on the line, and the k -. 0 limit gives the simple harmonic 
oscillator. We shall now study these limits. 

Consider initially k -. 1 .  In this limit L = 2K -. 03. Several observations are in order. 
As K + 1 the first stability interval shrinks to a point: A,, = A = 1 - b. This corresponds 
to the bound state ofthe reflectionless potential llcosh’ x. Secondly the second stability 
interval gives us a continuum of eigenvalues greater than A 2  = 2 - b. For a finite interval 
L we can regularise our operators by a term by term subtraction. This allows b to 
take any finite value as there will only be a finite number of eigenvalues in the range 
( A 2 ,  0). Here 0 appears as the lowest eigenvalue of KO, the operator whose eigenvalues 
we are subtracting. As L-. CO, however, this number diverges unless A 2  = 0, i.e. we 
need b = 2 for the k -. 1 limit. (Physically we need to subtract the right vacuum energy.) 
This limit gives of course the usual reflectionless potential 

(-dx2 d2 +-> cosh’x y = Ay. 

Also, we observe that denominator terms like cos J ~ L  in (31), which are irrelevant 
for A = O  with L finite, become necessary when taking the L + o ~  limit. 

Our general discussion has shown that the functional determinant is given via 
(lob),  where f ( A )  is the function: 

f ” ’ (A)=~In (  =In( sin + ~ ( A ) L  ,- ) 
A (A)-2  sin 4-J A L 

(43) 

= ln[sin + ( $ ( A )  - J A ) L  cot + cos +($(A ) -A) L]. (44) 

To calculate the L -. CD limit we wish to know the k + 0 limit of this espression. The 
relevant piece in this limit is the phaseshift 

i S (  A )  = lim k-1 +(I)( A )  -&)L. (45) 

Because of some errors in the standard texts on elliptic functions pertaining to the 
k-. 1 of this combination we evaluate it in appendix 2. There we obtain 

S(A) = 77-2 tan-’JX. (46) 
This phaseshift is just the usual soliton (Dashen et al 1975) result, yet obtained by 

a rather different route. Again by our formulae (10) we have for the continuum 

= iS(0) = irr. 
In[ det( -d2/dz’ - 2/cosh2 

-d2/dz2 (47) 

This agrees with the result 

-d2/dz2 - p (  p + l)/cosh2 Z +  A 

-d2/dz2+ A 
r(JA)r(&+ 1)  

det( . (48) ) = r ( f i  - p ) r ( h + p  + 1 )  

For p = 1 ,  A = 0 (48) gives - 1 ,  and hence is in agreement with (47). 
The generalisation of (46) and (47) is straightforward: we get Levinson’s theorem 

S(0) = m, where n is the number of bound states. It is also useful to note that this 
result is independent of the boundary conditions contained in the resolvent before the 
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limit was taken. (Equivalently the periodic and antiperiodic spectrum coalesce in the 
L-, CO limit.) We remark in passing that it is possible to give an expansion of (44) in 
terms of k2  (or k”), i.e. L using developments similar to those in the appendix. 

Lastly we describe the k -, 0 limit regaining the simple harmonic oscillator. Because 
the period L is finite the value of b can be arbitrary. The only point to note in taking 
this limit is the possible appearance of zero modes depending on the value of b and 
the need to separate off the negative eigenvalues from the resolvent. Figure 3 shows 
the position of the three lowest eigenvalues in relation to the eigenvalues of the 
subtraction simple harmonic oscillator. 

In calculating the k + O  limit we have from (40) and (36) after some evaluation 
(appendix 1) 

lim + ( A )  = ( A  + b)”2  
k - 0  

(49) 

which is precisely the simple harmonic value (28). Again we arrive at the usual results 
(33) and (13) for the determinant after removing the zero eigenvalue. 

O < b < k 2  to ? I  ? 2  b=  0 ?o  ?1 ?2 

0 1 2 0 1 2 

k2.b<l ?o  -?1 x.2  b = k 2  !o ? ?  

0 1 2 0 1 2 

l < b < l + k 2  to ? q  ?2 b.1 h o b 1  ?? 

l + k 2  < b XO ? 2  

0 1 2 0 1 2 

0 1 2 

Figure 3. Simple periodic spectrum of K depending on the value of the constant b compared 
with the harmonic oscillator eigenvalues. 

5. Conclusions 

This paper has considered the evaluation of functional determinants associated with 
periodic operators and specifically with one-dimensional Hill’s operators. We have 
shown how to construct these determinants in terms of a special subset of eigenvalues 
of the operator: those corresponding to the edges of the valency or conduction bands 
of the associated Schrodinger equation. For many potentials of interest, including 
those related to solitons, this subset is finite and known. Thus we can explicitly evaluate 
the functional determinant. We should note that the remaining eigenvalues are the 
solutions to a transcendental equation, and so to express the determinant in terms of 
a finite set of eigenvalues is a significant simplification. As an application of this 
representation we evaluated the first non-trivial example, that related to the sine- 
Gordon. There we took the limit of the period tending to infinity, so regaining the 
usual soliton phaseshift by a very different method. The representation we have used 
here is readily applied to field theories and gives the usual soliton masses in the 
appropriate limit. One particular advantage of this approach is that finite length 
contributions are accounted for and a perturbative expansion is allowed. This is to 
be discussed elsewhere. 
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Appendix 1. The k + O  limit 

Here we evaluate the k - 0  limit of + ( A )  (49) and the eigenfunctions (37). Firstly we 
recall K ( 0 )  = i.rr, K’(0)  = 00, thus the limit of the nome q = exp( - r K ’ / K )  is 0 as k + 0. 
Further for 

( A l . l )  cn2( a,  k) = ( A  + b - 1)/ k 2  

we deduce a + i K ’  as k + 0. To evaluate $ ( A )  we use 

Z[iu]= i[tn(u, k’) dn(u, k’) -Z[u, k’]-(ru/2KK’)]  

tn(u, k’) dn(u, k’) = -itn(iu, k)  dn(iu, k )  

(A1.2) 

. (1 + k2 - A - b)’”(A + b - k 2 ) ” 2  
( A  + b - 1)’” (Al.3) - - -1 

Here we have used ( A l . l )  and the usual elliptic function relations. Thus 

l imZ(a )= i [ (A+b) ’ ’2 -1 ]  (A1.4) 
k - 0  

whence using (40) we establish (49): 

lim + ( A )  = ( A  + b)’/*.  (A1.5) 
k - 0  

To evaluate the limits of the eigenfunctions y , ,  y 2  we first establish the limits of 
y,. From (35) 

O(O)H(x*a)  
exp( T xZ( a ) ) . 2H(ff)O(x) Y*(X, A )  = (A1.6) 

From the fact the nome q + 0 we find the limit of (A1.6) by expressing this in terms 
of theta functions. Then we find, using a + i K ’  

@(O)H(x* a )  sin(x * a )  
lim = lim = *exp(Tix). 
k-.O H ( a ) @ ( x )  k - 0  sin a 

(Al.7) 

Therefore using (Al.4) 

l,i_moy,(x, A )  = *exp[+ix(A + b)’/’]. (A1.8) 

We have then 

l h y , ( x ,  A )  =cos x(A + b)’12 (Al.9) 

exp[-ix(A + b)’12] -exp[ix(A + l ~ ) ’ ’ ~ ]  
2 

(1 + k2- A - b)’” 

k - 0  cn al  dn  a 
lim y2(x, A )  = lim 
k - 0  

= -i sin x ( A  +b)’” lim 
k - r 0 ( A + b - l ) 1 ’ 2 ( A + b - k 2 ) ’ ’ 2  

- sin x(A + b)’I2 
( A  +b)’” ‘ 

- (Al.  10) 
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Appendix 2. The phaseshift 

We calculate the limit of the phaseshift (45) 

Rewriting (36) A = 1 - b + k’ cn2 a we have 

h + b - 1  dn2 a = A + b - k2. l + k 2 - b - A  
,k2 

cn a =  
k2 

sn a =  

Thus 

k ’ s n a c n a  ( I t - k - b - A ) ( A + b - 1 )  
dn  cy = (  A i -  b - k2 

k2 sn a cn a 
lim 
k-i dn a 

= i( A + b - 2)1’2. 

To evaluate (A2.1), we use the following limit: 

= -tanh-’(sin p )  k2 sn a cn a 
k -  I dn a 

sin /3 = lim sn a. 
k + l  

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5a) 

(A2.5 b ) 

Note this limit is incorrectly given in Byrd and  Friedman (1971, p 34). The limit is 
established using the developments 

Z ( 4 ,  k ) = E ( 4 ,  k ) - ( E I K ) F ( 4 ,  k) $ = a m a  

valid for 0 < k“ tan’ 4 < 1, k 2  < 1. Then using the limit 

only the term p o ( d )  contributes to (A2.50). Thus 

k’ sn a cn a) =-In (1 - ,+o;;p) 
k - 1  dn a 

and sin p = lim(sn a )  = tanh U. Hence 

= - U  = -tanh-’(sin p )  k’ sn a cn a 
k-  1 dn a 

which establishes ( A 2 . 5 ~ ) .  
Now using 

$ ( A ) =  - iZ (a )+ .n /2k  

(A2.6) 

(A2.7) 

(A2.8) 
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we have 

lim$$(A) - ( A  + b  -2)1 /2]L=in- i  l im[Z(a) - i ( A  + b - 1)1'2] 
k +  1 k + l  

= in  -tan-'(A + b -2)1'2. (A2.9) 

Againwe see the necessity for b to equal 2 to derive the limit (A2.1), for L[(A + b - 

f6(A)=i7r-ttan-'JA. ( A2.10) 

2 ) ' / ' - J h ]  diverges if b # 2. We obtain then with b = 2 
- 
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